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ABSTRACT

Compared to the Arctic, seasonal predictions of Antarctic sea ice have received relatively little

attention. In this work, we utilize three coupled dynamical prediction systems developed at the

Geophysical Fluid Dynamics Laboratory to assess the seasonal prediction skill and predictability of

Antarctic sea ice. These systems, based on the FLOR, SPEAR_LO, and SPEAR_MED dynamical

models, differ in their coupledmodel components, initialization techniques, atmospheric resolution,

and model biases. Using suites of retrospective initialized seasonal predictions spanning 1992–

2018, we investigate the role of these factors in determining Antarctic sea ice prediction skill and

examine the mechanisms of regional sea ice predictability. We find that each system is capable

of skillfully predicting regional Antarctic sea ice extent (SIE) with skill that exceeds a persistence

forecast. Winter SIE is skillfully predicted 11 months in advance in the Weddell, Amundsen and

Bellingshausen, Indian, and West Pacific sectors, whereas winter skill is notably lower in the Ross

sector. Zonally advected upper ocean heat content anomalies are found to provide the crucial

source of prediction skill for the winter sea ice edge position. The recently-developed SPEAR

systems are more skillful than FLOR for summer sea ice predictions, owing to improvements in sea

ice concentration and sea ice thickness initialization. Summer Weddell SIE is skillfully predicted

up to 9 months in advance in SPEAR_MED, due to the persistence and drift of initialized sea ice

thickness anomalies from the previous winter. Overall, these results suggest a promising potential

for providing operational Antarctic sea ice predictions on seasonal timescales.

3
Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-20-0965.1.Brought to you by NOAA-GFDL Library | Unauthenticated | Downloaded 05/28/21 07:30 PM UTC



1. Introduction

The Arctic and the Antarctic are Earth’s two natural sea ice environments. These regions differ

in a number of fundamental aspects, including their continental geometry, ocean stratification

and ventilation, atmospheric and oceanic circulations, tropical teleconnections, sea ice thickness,

atmospheric chemistry, and interactions with ice sheets (e.g. Maksym 2019; Meredith et al. 2019).

While the observed Arctic sea ice extent (SIE) decline was generally projected by climate models,

Antarctic SIE has experienced a statistically insignificant increase over the satellite era contrary to

the model-projected declines (Roach et al. 2020; SIMIP Community 2020). The Arctic SIE decline

and associated stakeholder interests have motivated a recent body of research on the seasonal-to-

interannual predictability and prediction skill of Arctic sea ice (e.g. Guemas et al. 2016b). A key

outcome of this work has been the demonstration that dynamical models can be used to skillfully

predict regional Arctic sea ice on seasonal timescales (e.g. Dirkson et al. 2019). Conversely, there

have been relatively few assessments of the inherent predictability or seasonal prediction skill of

Antarctic sea ice. Antarctic sea ice predictions have potential utility for Southern Ocean fisheries

management, shipping, conservation, scientific logistics, tourism, and predicting impacts on the

Antarctic ice sheet and ice shelves (e.g. Robel 2017; Massom et al. 2018; Shepherd et al. 2018).

The goal of this study is to show that dynamical prediction systems are also a valuable tool for

seasonal sea ice predictions in the Antarctic.

Earlier work using coupled Earth System Models (ESMs) has demonstrated that Antarctic sea

ice is potentially predictable on the seasonal-to-interannual timescale. Holland et al. (2013) used

perfectmodel (PM) experiments–which estimate the upper limit of predictability of a given ESM–to

examine the initial value predictability ofAntarctic sea ice in theCommunityClimate SystemModel

version 3. They found that ensembles initialized on January 1 exhibit high potential predictability
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in all regions for the first three months, and that an eastward propagating predictability signal is

retained in some sectors until the sea-ice maximum is reached in September. They found that

predictability was subsequently lost during the ice retreat season before reemerging the following

growth season in certain locations. Holland et al. (2013) attributed this reemergence of wintertime

predictability to storage of ocean heat content anomalies from the previous winter beneath the

summer mixed layer, which return to the surface as the mixed layer deepens the following autumn.

Marchi et al. (2019) expanded upon these results, providing the first multi-model assessment

of Antarctic sea ice predictability. They identified a robust seasonality to predictability, with

high potential skill in winter and low potential skill in summer, and verified the winter-to-winter

reemergence mechanism identified in Holland et al. (2013). Consistent with this mechanism,

Marchi et al. (2019) found that predictability was strongly modulated by the strength of a model’s

convective mixing, as models with deeper winter mixed layers tended to have higher predictability

than those with shallower mixed layers. In addition to these studies, Juricke et al. (2014) used the

ECHAM6-FESOMmodel to show that Antarctic sea-ice volume (SIV) was potentially predictable

for 11 and 5 months from January 1 and July 1 start dates, respectively. Zunz et al. (2015) used

an intermediate complexity ESM to show that the sea-ice edge location was potentially predictable

during the first year at most locations and identified a winter reemergence of skill in the second

year at some locations. Taken together, these PM studies lay an important foundation for the

potential predictability of Antarctic sea ice in dynamical prediction systems. However, whether

this predictability can be achieved in nature with initialized dynamical forecasts has remained an

open question.

Statistical relationships and proposed physical mechanisms based on observations provide evi-

dence that operational Antarctic sea ice prediction skill could be achievable. A number of previous

studies have documented the Antarctic Circumpolar Wave (ACW), which is a coherent eastward
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propagating pattern of sea-surface temperature (SST), sea-ice concentration (SIC), and SIE anoma-

lies with a period of roughly 4 years and a wavelength of 180◦ (White and Peterson 1996; Gloersen

and White 2001; Venegas 2003; Wang et al. 2019). Gloersen and White (2001) emphasized the

critical role of eastward propagating SST anomalies in storing the memory of earlier winter/spring

sea ice anomalies, allowing these sea ice anomalies to reemerge the following fall/winter during

the ice advance season (Holland 2014). Other studies have documented co-variability between

Antarctic sea ice andmodes of climate variability such as the El Nino-Southern Oscillation (ENSO)

and the Southern Annular Mode (SAM) (Simmonds and Jacka 1995; Yuan and Martinson 2000,

2001; Kwok and Comiso 2002; Stammerjohn et al. 2008; Simpkins et al. 2012; Kwok et al. 2016;

Doddridge and Marshall 2017; Schneider and Deser 2018). Both of these modes are linked with

the Amundsen Sea Low (ASL), which drives regional Antarctic sea ice variability, and exhibits

high lagged correlation with sea ice in certain regions and seasons (Holland et al. 2017, 2018).

Chen andYuan (2004) constructed a statistical linearMarkovmodel for seasonal Antarctic sea ice

prediction designed to capture some aspects of these observed relationships. Their model, based

on SIC and atmospheric input data, showed skillful forecasts of Antarctic SIC up to nine months

in advance, with particularly high skill for winter target months in the Amundsen, Bellingshausen,

and Weddell Seas. There have been limited attempts to seasonally forecast Antarctic sea ice

using dynamical models. Morioka et al. (2019) showed skillful predictions of spring (October–

December; OND) SIC for forecasts initialized on September 1 with the SINTEX-F2 dynamical

model, but did not assess skill at longer lead times. Zampieri et al. (2019) investigated the sub-

seasonal prediction skill of the Antarctic sea ice edge, finding that dynamical forecasts were skillful

up to 30 days in advance and generally had lower skill than Arctic sub-seasonal forecasts. Guemas

et al. (2016a) showed that initialized predictions of pan-Antarctic SIE fromMay 1 and November 1

were skillful for roughly twomonths, but with skill values lower than a damped anomaly persistence
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forecast. The Sea Ice Prediction Network South (SIPN-South) project was established in 2017

as a community effort designed to assess the current ability of prediction systems to forecast

summer Antarctic sea ice (Massonnet et al. 2020). The initial three years of SIPN-South forecasts

show a large spread in dynamical model-based predictions which exceeds that of the observed

climatological spread, however more forecast years are necessary to rigorously assess the skill of

these systems.

In this study, we provide the first comprehensive dynamical model-based assessment of Antarctic

seasonal sea ice prediction skill using initialized forecasts from three dynamical prediction systems.

We subsequently use these prediction skill findings to investigate the physical mechanisms that

underpin Antarctic sea ice predictability and prediction skill. Our findings show that regional

Antarctic sea ice predictions are often more skillful than their Arctic counterparts, suggesting a

promising potential for skillful operational forecasts of Antarctic sea ice. The outline of this paper

is as follows. In section 2, we describe the seasonal prediction systems, initialization techniques,

prediction experiments, and methods for forecast skill assessment. In section 3, we evaluate the

initial conditions and assess prediction skill for regional SIE and the sea ice edge position. In

section 4, we investigate the mechanisms of sea ice predictability in these systems, focusing on the

impacts of SIE initialization, sea ice thickness, and advected upper ocean heat content. In section

5, we consider sources of prediction error, emphasizing the importance of the ocean convective

state and sea ice drift. We summarize our results in section 6.
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2. Methods

a. FLOR seasonal prediction system

In this study, we consider predictions made with three dynamical seasonal prediction systems

developed at the Geophysical Fluid Dynamics Laboratory (see Table 1). We begin by describing

the Forecast-oriented Low Ocean Resolution (FLOR) system in this subsection and describe two

systems based on the Seamless system for Prediction and EArth system Research (SPEAR) in the

following subsection. The FLOR prediction system has been shown to skillfully predict regional

SIE in the Arctic (Bushuk et al. 2017), which motivates its use for Antarctic sea ice predictions in

this study.

FLOR is a global dynamical model that has nominal horizontal resolution of 0.5◦ in the at-

mosphere and land components and 1◦ in the ocean and sea ice components, with 50 vertical

ocean levels and 32 vertical atmospheric levels (Vecchi et al. 2014). The sea ice component of

FLOR is based upon the sea ice simulator version 1 (SIS1; Delworth et al. 2006), which uses an

elastic-viscous-plastic rheology to compute internal sea ice stresses (Hunke and Dukowicz 1997),

an ice-thickness distribution (ITD) with 5 ice thickness categories (Thorndike et al. 1975; Bitz

et al. 2001), a modified Semtner thermodynamic scheme with two ice layers and one snow layer

(Winton 2000), and a surface-temperature dependent albedo parameterization (see section 3.6.2 of

Hunke et al. (2015)). FLOR’s atmosphere, land, and ocean components are based on Atmosphere

Model version 2.5 (AM2.5; GAMDT 2004; Delworth et al. 2012), Land Model version 3 (LM3;

Milly et al. 2014), and an updated version of Ocean Model version 2.1 (OM2.1; Gnanadesikan

et al. 2006; Delworth et al. 2012), respectively.

The ocean and sea ice components of the FLOR prediction system are initialized using the

GFDL Ensemble Coupled Data Assimilation system (ECDA; Zhang et al. 2007), which is based
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upon the CM2.1 coupled model (Delworth et al. 2006). ECDA is a weakly coupled assimilation

system that uses the ensemble adjustment Kalman filter (EAKF; Anderson 2001) and a full-

field initialization approach spanning the time period 1961–2018. The system assimilates 3-D

atmospheric temperature data from the NCEP–DOE Atmospheric Model Intercomparison Project

(AMIP-II) reanalysis (Kanamitsu et al. 2002), which is used to update 3-D atmospheric temperature

and wind fields via flow-dependent covariances. In the ocean, the system assimilates SSTs from the

Met Office Hadley Centre’s sea ice and SST data set (HadISST1; Rayner et al. 2003) (prior to 2011)

and NOAA’s daily Optimum Interpolation SST data set (OISST; Reynolds et al. 2007) (post 2011),

and ocean temperature and salinity (T/S) profiles. These T/S profiles come from the World Ocean

Database (WOD; Levitus et al. 2013), the Global Temperature and Salinity Profile Programme

(GTSPP; Sun et al. 2010), and the Argo program (Roemmich et al. 2004). The ECDA system

does not explicitly assimilate sea ice data, but the sea ice state is constrained via heat fluxes and

interfacial stresses from the ocean and atmosphere, associated with the data assimilation in each of

these components (Bushuk et al. 2019). The sea ice state variables initialized from ECDA include

the ice concentration, thickness, temperature, and snow depth in each ice-thickness category and

the sea ice velocity field. FLOR’s atmosphere and land initial conditions (ICs) come from a suite

of “AMIP-style” atmosphere-land only simulations forced by observed SST and sea ice. This

technique was used because the ECDA is based upon CM2.1, which employs a lower-resolution

atmosphere than FLOR.

b. SPEAR seasonal prediction system

SPEAR is GFDL’s next-generation seasonal prediction system, which recently replaced FLOR

and began submitting real-time experimental seasonal predictions to the North American Multi-

Model Ensemble (NMME; Kirtman et al. 2014) in February 2021. SPEAR has newly developed
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ocean, atmosphere, sea ice, and land componentmodels and a fully redesigned initialization system,

making it independent of the previous FLOR system (see Table 1). The SPEAR model (Delworth

et al. 2020) uses the same components as GFDL’s new CMIP6 models, CM4 and ESM4 (Held et al.

2019; Dunne et al. 2020), but with design choices geared towards the computational efficiency

required for seasonal-to-decadal climate prediction.

SPEAR’s ocean and sea ice components employ a nominal horizontal resolution of 1◦ with 75

vertical ocean levels and are based upon the Modular Ocean Model version 6 (MOM6) and the sea

ice simulator version 2 (SIS2) (Adcroft et al. 2019). Two varieties of SPEAR have been developed,

SPEAR_LO and SPEAR_MED, which have different atmospheric and land horizontal resolutions

of 1◦ and 0.5◦, respectively. The models both use 33 vertical atmospheric levels and are based on

Atmosphere Model version 4 and Land Model version 4 (Zhao et al. 2018a,b). Compared to SIS1,

the SIS2 sea icemodel features improved shortwave radiation physics based on the Delta-Eddington

scheme of Briegleb and Light (2007), better vertical resolution with four ice layers and one snow

layer, updated thermodynamics with improved conservation properties (Bitz and Lipscomb 1999),

and ice dynamics that are solved using a C-grid stencil as opposed to the B-grid used by SIS1

(Bouillon et al. 2009). As in SIS1, SIS2 uses an elastic-viscous-plastic rheology and an ITD with

5 ice thickness categories. Both the SIS1 and SIS2 models do not include a subgrid ice ridging

scheme, a landfast ice parameterization, or a side melt scheme.

The ICs used for the SPEAR_LO and SPEAR_MED predictions come from two separate assim-

ilation experiments spanning 1990–2018. The ocean ICs come from an ocean data assimilation

(ODA) system based on the SPEAR_LO model (Lu et al. 2020). The ODA system uses an EAKF

to assimilate daily SST from NOAA’s OISST product and T/S profiles from Argo floats, expend-

able bathythermograph data (XBT), and tropical moorings. The ODA system does not currently

assimilate ship-based conductivity-temperature-depth (CTD), drifting buoy, and instrumented ma-
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rine mammal data, each of which have coverage in the polar regions. The atmospheric state is

unconstrained in the ODA system, as this was found to improve the ensemble spread of ocean state

variables in the assimilation run and also reduce the magnitude of assimilation increments.

The sea ice, atmosphere, and land ICs come from nudged ensemble experiments performed with

SPEAR_LO and SPEAR_MED, which incorporate both atmospheric, SST, and SIC constraints.

In these nudged runs, the 3-D atmospheric temperature, wind, and humidity fields are nudged

towards the NOAA/NCEP Climate Forecast System Reanalysis (CFSR; Saha et al. 2010) and

the SSTs are nudged toward daily OISST data. The nudged experiments are run as 15-member

ensembles initialized from members 1–15 of the SPEAR_LO and SPEAR_MED large ensembles,

described in the following subsection. In order to improve performance near and under sea ice, the

raw OISST data is modified prior to nudging and assimilation. Using the daily OISST SIC data,

all ice-covered gridpoints are identified based on a threshold of SIC ≥ 30%. At these gridpoints,

the SST value is replaced by the freezing point temperature of seawater () 5 ) based on the model-

predicted sea surface salinity (SSS) and the relationship ) 5 = −0.054 ∗ (((. The SST nudging

uses a piston velocity of 4 meters per day (corresponding to a 12.5 day e-folding time scale for a

50m mixed layer) and the atmospheric nudging is performed using a 6-hour e-folding time scale

for temperature and wind, and a 24-hour time scale for humidity. These atmospheric data provide

critical thermodynamic and dynamic constraints on sea ice thickness (SIT), which are not present

in the ODA experiment. The nudged and ODA experiments both utilize a common SST dataset,

which allows the ICs from these two runs to be combined in order to initialize the coupled model.

The sea ice state variables initialized from the SPEAR_LO and SPEAR_MED nudged runs include

the ice concentration, thickness, temperature, and snow depth in each ice-thickness category and

the sea ice velocity field.
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The SPEAR system also uses an ocean-tendency adjustment (OTA) procedure to reduce the

model’s ocean bias. This procedure applies the climatological increments obtained from a prior

ODA run as 3-D temperature and salinity tendency terms to the free-running ocean model. This

technique reduces model drift and improves both assimilation accuracy and prediction skill in

coupled model predictions of the El Nino-Southern Oscillation (Lu et al. 2020).

c. Retrospective Seasonal Predictions and Large Ensemble Experiments

We analyze suites of retrospective seasonal prediction experiments performed with each predic-

tion system (see Table 1). The ensemble predictions are initialized on the first of each month and

integrated for one year. The FLOR predictions are run with 12 ensemble members and span the

period 1981–2018. The SPEAR_LO and SPEAR_MED predictions are both run with 15 ensemble

members and span 1992–2018.

We also consider large ensemble (LE) experiments of historical and scenario simulations per-

formed with each model. Ensemble means of these LEs are used to assess the biases of the

free-running models. The FLOR LE is a 30-member ensemble that uses historical radiative forc-

ings up to 2005 and representative concentration pathway 8.5 (RCP8.5; Meinshausen et al. 2011)

from 2006–2100 (Bushuk et al. 2020). The SPEAR_LO and SPEAR_MED large ensembles are

30-member ensembles that use historical forcings up to 2014 and shared socioeconomic pathway

5-8.5 (SSP5-8.5; Riahi et al. 2017) from 2015-2100 (Delworth et al. 2020). The ICs for each LE

are taken from different years of preindustrial control simulations performed with each model. The

IC years were chosen with 10-year spacing in FLOR and 20-year spacing in SPEAR, designed to

sample different phases of internal climate variability.
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d. Observational Data

We evaluate the model predictions using monthly-averaged passive microwave satellite SIC ob-

servations from the National Snow and Ice Data Center processed using the NASA team algorithm

(data set ID: NSIDC-0051, Cavalieri et al. (1996)). The observed SIC data is regridded to the

model grid in order to compute skill metrics. Sea ice drift is assessed using the low resolution sea

ice drift product of the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSISAF,

Lavergne et al. (2010)). We assess the ocean state using 3-monthly temperature anomaly data from

the World Ocean Atlas (WOA) Global Ocean Heat and Salt Content dataset (GOHSC; Levitus

et al. 2012). We also use an observed mixed-layer depth (MLD) climatology computed from T/S

profiles from Argo (snapshot of Argo Global Data Assembly Centre from 9 April 2020; Argo

(2020)) and ship-based conductivity-temperature-depth data (downloaded in NetCDF format 9

June 2020 from the NOAAWorld Ocean Database 2018; Boyer et al. (2018)). The MLD is defined

as the depth where the surface-referenced density exceeds the 10m reference value by 0.03 kg m−3

(de Boyer Montégut et al. 2004).

e. Skill Metrics and Significance Testing

We assess prediction skill using the anomaly correlation coefficient (ACC) and the mean-squared

error skill score (MSSS). Throughout the manuscript, the term ‘target month’ will be used to refer

to the month that is being predicted. We let > be an observed time series of some quantity of

interest, such as regional SIE in a given target month. We let >8 be the observed value at time

8, # be the number of years in the observed timeseries,  be the number of prediction ensemble

members, and g be the forecast lead time. We let ?8 9 (g) be the predicted value of the 9 th ensemble

member that is initialized g months prior to time 8. We take the ensemble-mean prediction, ?8 (g),
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as our lead g prediction of >8, given by

?8 (g) =
1
 

 ∑
9=1

?8 9 (g). (1)

We let an overbar denote the temporal-mean over the # samples. The ��� is the Pearson

correlation coefficient between the predicted and observed time series, given by:

��� (g) =
∑#
8=1

(
?8 (g) − ?(g)

) (
>8 − >̄

)√∑#
8=1

(
?8 (g) − ?(g)

)2
√∑#

8=1
(
>8 − >̄

)2
. (2)

We also compute a “detrended ACC” skill score, where the anomalies are computed relative to a

linear trend prediction. This metric removes skill associated with the secular trend, focusing on

interannual anomalies. Specifically, for each time 8 we compute a linear trend prediction, >!
8
, based

on all past observed data (up to time 8−1). We similarly compute a linear trend prediction, ?!
8
(g),

based on all past predicted data. The detrended ACC is then given by

���detrend(g) =
∑#
8=1

(
?8 (g) − ?!8 (g)

) (
>8 − >!8

)√∑#
8=1

(
?8 (g) − ?!8 (g)

)2
√∑#

8=1
(
>8 − >!8

)2
. (3)

This approach is chosen to avoid using future data when computing the detrended anomaly in a

given year, as is the case when a single linear trend is applied to the full time series. Note that these

two detrending approaches produce very similar ACC values for Antarctic SIE. To avoid overfitting

to shorter-term variations, we assume a linear trend of zero for the first 10 years.

TheMSSS (Murphy 1988) is a skill score based on a comparison of mean-squared errors (MSEs)

between the model predictions and a reference forecast, given by

"((((g) = 1− "(� (g)
"(�clim

, (4)

where

"(� (g) =
∑#
8=1

(
?8 (g) − >8

)2

#
, (5)

and

"(�2;8< =

∑#
8=1(>̄− >8)2

#
. (6)
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The MSSS is directly related to the ��� using the decomposition of Murphy (1988), which shows

that

"((((g) = ���2(g) −
(
��� (g) −

f?

f>

)2− (?(g) − >̄)
2

f2
>

, (7)

where f? and f> are standard deviations of the predicted and observed time series, respectively.

The second and third terms on the right-hand-side make negative definite contributions to the

MSSS related to conditional and mean forecast biases, respectively. We also consider a detrended

MSSS metric, where MSEs are computed using detrended anomalies as defined above. MSSS

values close to 1 indicate a highly skillful forecast, a value of 0 indicates no skill above climatology,

and negative values indicate worse performance than a climatological forecast.

We test the ACC and MSSS values for statistical significance using a bootstrapped resampling

procedure applied to the prediction ensemble. This approach repeatedly resamples the prediction

ensemble (with replacement) in order to produce empirical distribution estimates of the ACC and

MSSS statistics (Efron 1982). For each target month, lead time, and region, we compute a 95%

confidence interval based on a bootstrapped distribution of 1000 realizations. If the lower limit of

this confidence interval exceeds zero, we report the skill to be statistically significant at the 95%

confidence level.

All analysis in this manuscript is based on monthly-mean fields. The terminology “lead 0” refers

to a forecast initialized on the first of the month predicting that month’s mean value, and longer-lead

forecasts are defined correspondingly. We assess forecast skill for SIE, defined as the areal sum of

all grid points with SIC ≥ 15%. We also consider forecast skill of the sea ice edge position at each

longitude, defined as the maximum northerly extent of sea ice based on a 15% SIC threshold.
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f. Reference Forecasts

In addition to the climatological and linear trend reference forecasts that underpin the skill metrics

defined above, we also compare prediction skill to an anomaly persistence reference forecast. The

anomaly persistence forecast uses the observed sea ice anomaly at the initial forecast time. These

observed anomalies can be either defined relative to the linear trend, termed detrended anomalies,

or relative to the climatology, termed non-detrended anomalies. We consider persistence forecasts

based both detrended and non-detrended anomalies. We also consider an advected anomaly

persistence forecast for the sea ice edge position, which accounts for zonal advection of the sea

ice edge anomaly. Specifically, our advected persistence prediction of the sea ice edge position

anomaly, 4′(G, C), is given by

4′(G, C) = 4′(G− 2g, C − g) (8)

where C is forecast target time, g is the forecast lead time, G is the longitude, and 2 is the eastward

advection speed. The advection speed is chosen as 2 = 360◦/7 years based on the documented

period of the ACW (Gloersen and White 2001).

3. Regional Antarctic Sea Ice Prediction Skill

a. Climatology and Interannual Variability of Sea Ice Initial Conditions (ICs)

Wefirst consider the quality ofAntarctic sea ice ICs in the FLOR,SPEAR_LO, andSPEAR_MED

systems. The ICs are assessed using monthly-mean values from the assimilation runs used to

initialize sea ice (see Table 1). We compute regional SIE in the five Antarctic sectors shown

in Fig. 1 and over a Pan-Antarctic domain. Figure 2 shows regional SIE climatologies over the

period 1992–2018, which is common to all experiments. The FLOR ICs have a notable low bias

in austral summer SIE in all Antarctic regions, similar to the bias of the free-running FLOR and
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SPEAR models (see dashed curves for FLOR Hist, SPEAR_LO Hist, and SPEAR_MED Hist).

This low summer bias is substantially improved in the SPEAR ICs, which show a reasonably good

agreement with observed regional summer SIE. The SPEAR ICs and historical simulations are

generally biased high for austral winter SIE, with the exception of the Ross Sea, where the historical

simulations have a modest low bias. The FLOR ICs have small winter biases in most regions,

except for the West Pacific sector, which shows a positive bias. The FLOR historical simulations

are also biased high in the West Pacific and are generally biased low in other regions.

In Fig. 3, we plot time series of regional September and March SIE, respectively, from FLOR,

SPEAR_LO, and SPEAR_MED ICs and NSIDC observations. We show March SIE instead of

February, the month of the SIE minimum, because FLOR is essentially ice free in February.

Both the FLOR and SPEAR ICs capture some aspects of the observed interannual variability of

regional Antarctic SIE, with the SPEAR systems consistently outperforming FLOR in all regions

and all seasons. This difference between the prediction systems is shown quantitatively in Fig. 4,

which plots the detrended correlation values between the ICs and observations. Note that the

correlation values and qualitative differences between models are similar if the non-detrended

timeseries are used. The SPEAR IC detrended correlations generally exceed 0.8, whereas the

FLOR IC correlations are generally lower than this value. The differences between SPEAR and

FLOR are substantial in all seasons, but particularly notable in summer, where the FLOR system

has low correlation values. The SPEAR_LO and SPEAR_MED correlations are generally similar,

with the exception of the spring and summer months in the Weddell, Ross, and Pan-Antarctic

domains, which have higher correlation values in the SPEAR_MED system. We also find that,

in all three systems, the Pan-Antarctic SIE correlations are generally lower than those found in

the regional domains. These low Pan-Antarctic SIE correlations suggest that some cancellation
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of regional-scale anomalies occurs when Pan-Antarctic SIE is computed, and that the resulting

integrated quantity is less well captured than the regional anomalies in these systems.

b. Regional Sea Ice Extent Prediction Skill

Figure 5 shows the detrended ACC for regional SIE predictions in the FLOR, SPEAR_LO, and

SPEAR_MED prediction systems. The prediction skill of non-detrended anomalies is similar to

the detrended skill (see Fig. S1 in the supplemental material), indicating that seasonal Antarctic sea

ice skill derives primarily from initial-value predictability. This differs from seasonal predictions

in the Arctic, where forced sea ice trends represent the dominant source of predictability for non-

detrended anomalies (e.g. Sigmond et al. (2013); Wang et al. (2013)). In all three systems, we

find that the regional SIE skill generically exceeds the skill of an anomaly persistence forecast, as

indicated by the triangle markers in Fig. 5. For some target months and some regions, prediction

skill is statistically significant at least to 11 months in advance, indicating that these prediction

systems are successfully capturing some aspects of interannual climate variability in the Southern

Ocean. The correlation skill structures vary by region, season, and model. We highlight the key

prediction skill features below.

The Weddell Sea is a region of notably high prediction skill, particularly in the SPEAR_MED

system, which shows skillful predictions at leads times of 6–11 months for most target months.

SPEAR_LO also shows skillful predictions in the Weddell region, but generally has lower skill

values than SPEAR_MED. A similar skill reduction from SPEAR_MED to SPEAR_LO is found

for Pan-Antarctic SIE, suggesting that there could be value to the higher-resolution atmosphere

employed by the SPEAR_MED model. This skill difference is further explored in subsection 5.a.

The performance of the SPEAR systems is generally similar across the other Antarctic regions.

Unlike SPEAR, the FLOR system has low skill for summer sea ice in the Weddell sea. FLOR
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performs poorly for summer sea ice predictions in all Antarctic regions, due to the low quality of

its summer sea ice ICs (Fig. 4) and the negative summer sea ice bias of the free-running model

(Fig. 2). The SPEAR systems show notable improvements to FLOR for summer predictions in all

Antarctic regions. The sources of this summer prediction skill are further examined in subsections

4.a and 4.b.

FLOR shows skillful predictions of autumn and winter Weddell sea ice, which exceed the

persistence forecast at lead times of 3–7 months. Interestingly, the Weddell Sea correlation

structures show diagonal skill features in each of the three systems. These diagonal features

correspond to a reduction in prediction skill at a fixed initialization month. In SPEAR_LO and

SPEAR_MED, the diagonal features correspond to initialization months June or July (i.e. 12

months prior to winter), whereas FLOR shows a diagonal feature corresponding to February or

March-initialized predictions. The fact that SPEAR_LO and SPEAR_MED have winter skill for

predictions initialized prior to March implies that the diagonal feature seen in FLOR is not a

fundamental aspect of Weddell sea ice predictability, but rather a deficiency of the FLOR system.

Interestingly, the Pan-Antarctic predictions also display diagonal skill features, corresponding to

initialization months November and September in SPEAR_LO and SPEAR_MED, respectively.

The Amundsen and Bellingshausen Seas stand out as a region with high winter prediction skill

and a high degree of consistency across the three systems. Target months of June–August are

skillfully predicted at least 11 months in advance in each system. We explore the sources of this

winter prediction skill in subsection 4.c. On the other hand, the Ross Sea stands out for its notably

poor prediction skill across each of the three systems, which display little skill beyond one month

lead times. Some aspects of this poor prediction skill are discussed in subsection 5.b.

The FLOR system has winter prediction skill at 11 month lead times in both the Indian and West

Pacific sectors. This winter skill is similar to SPEAR in the Indian sector and higher than SPEAR
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in the West Pacific sector, which does not show continuous skill beyond 4 month lead times. The

poor winter skill of SPEAR in the West Pacific is possibly related to the large positive winter SIE

bias in the SPEAR ICs and free-running model (Fig. 2c). The SPEAR systems display summer

SIE prediction skill in these regions at 3–11 month lead times, which is higher than the skill of the

FLOR system.

Pan-Antarctic SIE integrates these diverse regional contributions into a single metric. We find

that the SPEAR systems are more skillful than FLOR at the Pan-Antarctic scale. A particular

prediction of interest is the December 1 initialized prediction of summer Antarctic SIE, which the

SIPN-South project has been collecting from the sea ice community since the 2017-18 melt season

(Massonnet et al. 2020). For predictions initialized from December 1, the SPEAR_MED system

has detrended ACC skill for February and March Pan-Antarctic SIE of 0.58 and 0.67, respectively,

indicating that skillful predictions are realizable at this lead time. In addition to the diagonal

correlation structures discussed earlier, the Pan-Antarctic SPEAR predictions show a sharp drop in

skill for target months October and November. This skill drop off suggests that, in these systems,

skillful prediction of the winter sea ice maximum does not imply skillful prediction of spring sea

ice anomalies, similar to the finding of Holland et al. (2013). The Pan-Antarctic FLOR predictions

are limited by their poor Ross Sea skill. We find that prediction skill increases to a level resembling

the FLOR Weddell Sea skill if the Ross Sea domain is excluded from the analysis (not shown).

The squared ACC skill can be interpreted as the variance explained by a regression-adjusted

forecast, which is free of conditional and systematic biases (see Eq. 7), whereas the MSSS is

sensitive to these biases. Since regression-adjusting using the full hindcast set can artificially inflate

MSSS skill, we bias correct the predictions using a leave-one-out linear regression adjustment

(Manzanas et al. 2019). This adjustment corrects both the amplitude of predicted anomalies

(conditional biases) and the mean predicted value (mean biases). Figure 6 shows the MSSS for
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detrended regional SIE predictions. We find that the MSSS values mirror the squared ACC plots

but generally have lower values (compare Fig. 6 to Fig. S3), indicating forecast degradations due to

conditional biases. This suggests that the perceived skill based on ACC in Fig. 5 can not always be

achieved in practice. In Fig. S4, we consider MSSS skill for predictions that have been mean-bias

corrected, but have not been corrected for conditional biases. We find that the MSSS skill is

substantially degraded in this case, confirming that there are notable conditional biases in these

prediction systems.

The spread of the prediction ensembles increases with lead time, consistent with lower pre-

dictability at longer lead times (not shown). In general, the ensembles are approximately Gaussian

distributed, however the ensemble sizes preclude a precise characterization of their probability

distribution functions. Applying a chi-square goodness-of-fit test with a 5% significance level to

the prediction ensembles (Pearson 1900), we find that the null hypothesis that the ensemble distri-

butions are Gaussian is rejected 7% of the time in FLOR, 8% of the time in SPEAR_LO, and 5% of

the time in SPEAR_MED. Therefore, the SPEAR_MED ensembles are generally indistinguishable

from Gaussian distributions, whereas the FLOR and SPEAR_LO ensembles occasionally display

non-Gaussian features. The non-Gaussianity in FLOR arises for summer target months due to cer-

tain regions going ice-free. The non-Gaussian features in SPEAR_LO arise for winter and spring

target months at short lead times (0–2 months) due to differences in oceanic convective activity

across ensemble members in the SPEAR_LO nudged run (see further discussion in subsection 5.a).

c. Sea Ice Edge Predictions

Next, we take a more fine-grained approach and consider prediction skill of the sea ice edge

position at each longitude. Inspired by the analogous figure of Holland et al. (2013), Fig. 7 shows

detrended ACC skill of the ice edge position for predictions initialized on April 1. Results are

21
Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-20-0965.1.Brought to you by NOAA-GFDL Library | Unauthenticated | Downloaded 05/28/21 07:30 PM UTC



qualitatively similar for other choices of initialization month. We find zones of high prediction

skill that exhibit an eastward propagation over the autumn and winter months, particularly in

the Amundsen and Bellingshausen, Weddell, and Indian sectors. This eastward propagation is

consistent with an eastward advection of anomalies via the Antarctic Circumpolar Current, as has

been documented in observations (White and Peterson 1996; Gloersen and White 2001).

Interestingly, the initialized prediction skill shown in Fig. 7 bears a close resemblance to the

perfect model skill of Holland et al. (2013), suggesting that the prediction systems are capturing

some of the predictability mechanisms present in the perfect model context. However, Marchi

et al. (2019) showed that while eastward propagation of predictability was a robust feature across

models, the spatial zones of high predictability are model dependent. Analysis of other prediction

systems is needed to assess the robustness of the skill patterns identified in Fig. 7. The FLOR and

SPEAR predictions generally exceed the skill of the advected sea ice persistence forecast (Fig. 7d;

Eq. 8), implying other sources of predictability beyond advected sea ice anomalies.

Figure 8 takes a different vantage point, showing September ice edge prediction skill for different

lead times. The FLOR and SPEAR systems each have “gaps” in their prediction skill in the western

Ross and western Weddell Seas. Both of these regions are characterized by northward sea ice drift,

suggesting that prediction skill may be lower in areas of strong northward ice advection. Conversely,

prediction skill is high in the Amundsen and Bellingshausen, eastern Weddell, and western Indian

sectors, regions dominated by strong eastward sea ice drift. We discuss the connection between

ice drift and prediction skill in subsection 5.b.
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4. Mechanisms of Regional Antarctic Sea Ice Predictability

In this section, we seek to understand some aspects of the physical mechanisms underlying the

prediction skill presented in Figs. 5– 8. We focus here on the roles of (a) sea ice extent initialization;

(b) sea ice thickness; and (c) advected upper ocean heat content.

a. Sea Ice Extent Initialization

Is there a connection between SIE ICs and prediction skill? To explore this, in Fig. 9 we compare

detrended ACC skill at different lead times to detrended correlation values between regional

SIE ICs and NSIDC observations. Note that the SPEAR_LO results are qualitatively similar to

SPEAR_MED, and are not shown here for visual clarity. The regional SIE ICs set an upper bound

to prediction skill (black curves in Fig. 9) and explain some aspects of the regional and inter-model

differences in prediction skill. For example, compared to FLOR, the SPEAR_MED predictions

clearly benefit from their higher quality SIE ICs. These SIE ICs directly improve predictions at

short lead times (0 and 1 months) via SIE anomaly persistence, whereas other mechanisms become

relevant at longer lead times. It is important to note that high-quality SIE ICs do not imply skillful

predictions, as evidenced by the SPEAR_MED Ross Sea predictions. Therefore, high-quality

SIE initialization represents a necessary but insufficient condition for a skillful Southern Ocean

prediction system at lead times longer than 1–2 months.

b. Sea Ice Thickness

Sea ice thickness (SIT) has been shown to be the crucial source of predictability for summer sea

ice predictions in the Arctic (e.g. Chevallier and Salas y Mélia 2012; Bonan et al. 2019) due to the

multi-month persistence and relatively large spatial autocorrelation of SIT anomalies (Blanchard-

Wrigglesworth and Bitz 2014; Ponsoni et al. 2020). Previous work has suggested that the efficacy
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of SIT as a predictor in the Antarctic is reduced relative to the Arctic due to its thinner ice pack and

smaller fraction of multi-year ice (e.g. Holland et al. 2013; Ordoñez et al. 2018; Marchi et al. 2019).

However, theWeddell Sea, which dominates the multi-year ice coverage in the Southern Ocean, is a

region where SIT could potentially provide a key source of predictability. In Fig. 10, we investigate

this mechanism, plotting detrended correlations between observed March Weddell SIE and the

SPEAR_MED SIT ICs that were used to initialize the predictions at different lead times. We find

positive correlations between March SIE and earlier SIT ICs, which extend back to the previous

winter. These positive correlations are consistent with the physical expectation that anomalously

thick ice requires additional energy to melt and therefore leads to positive SIE anomalies during the

melt season. These correlations suggest that SIT is providing a source of summer SIE prediction

skill in the SPEAR_MED system. SPEAR_LO has notably lower correlation values, particularly

for lead times greater than four months, consistent with the lower Weddell summer prediction skill

in this system (see Fig. S5 in the supplemental material).

The correlations shown in Fig. 10 suggest a clear role for sea ice dynamics in Weddell SIE–

SIT coupling. At lead times of 0–5 months, the highest correlations occur near or northward of

the March sea ice edge location, suggesting that local persistence of SIT anomalies is providing

predictive skill. There may also be a role for spring SIT anomalies north of the summer ice edge

in modulating spring sea ice loss and the eventual summer minimum via the ice-albedo feedback.

At longer lead times of 6–8 months, the highest correlations occur south of the March sea ice

edge. The SIT anomalies at these locations need to advect northwards in the Weddell gyre in

order to influence summer SIE (see observed drift field in Fig. 8). Indeed, the advective travel

time for an ice parcel from the southern Weddell Sea to the summer ice edge position is broadly

consistent with these 6–8 month lead times. We also note a dipole correlation pattern present for

winter and spring ice thickness (lead times of 4–10 months). This north-south dipole pattern is
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consistent with Weddell SIT patterns being controlled by wind-driven ice export anomalies. For

example, in years with anomalous northward winds, additional ice is exported from the Weddell

Sea, producing negative SIT anomalies in the southern Weddell Sea and positive anomalies in the

northern Weddell Sea.

How much of the summer Weddell SIE skill can be attributed to SIT initialization? To address

this question, we construct three simple linear-regression models to compare to the skill of the

dynamical prediction systems. The first usesWeddell SIE as a predictor (see section 4.a), the second

uses Weddell sea ice volume (SIV) south of 60◦S as a predictor, and the third uses advected upper

ocean heat content (OHC) as a predictor (see section 4.c). These predictors are computed using

the ICs of each system and used to predict the observed Weddell SIE. Figure 11 compares the skill

of these statistical predictions to the skill of each dynamical prediction system. We find that SIE

ICs are the dominant source of summer prediction skill at short lead times (0–2 months), whereas

SIT ICs become the dominant source of skill at longer lead times (3–11 months). Interestingly, the

high skill of the SPEAR_MED system in theWeddell Sea can be fully captured by the combination

of the SIE and SIV regression models. This statistical reconstruction shows that SIT ICs are the

crucial source of long-lead summer Weddell Sea prediction skill in this system. We find a similar

breakdown between short and long lead summer prediction skill sources in other Antarctic regions

(not shown). The advected OHC predictor, described in the following subsection, is less skillful

for summer SIE than the sea-ice based predictors. Figure 11 also shows that the lower summer

skill in SPEAR_LO can be attributed to the lower quality SIT ICs in this system. We explore this

issue further in subsection 5.a. Finally, it is clear that FLOR’s summer SIE skill is severely limited

by its poor SIE and SIT initialization.

We also investigate the possible role of snowon sea ice as a source of summer sea ice predictability.

We find that a predictor based on the combined mass of sea ice and snow south of 60◦S performs
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very similarly to the SIV-based predictor (not shown). This similar skill is due to the fact that the

combined mass is dominated by sea ice (snow mass typically accounts for 0–8% of the combined

mass in summer and 10–12% in winter) and the fact that snow and sea ice thickness covary strongly

in these systems.

c. Advected Upper Ocean Heat Content

Perfect model predictability studies have shown that upper OHC provides a key source of

predictability for the winter sea ice edge (Holland et al. 2013; Marchi et al. 2019). Here, we ask:

Are the FLOR and SPEAR initialized predictions capturing this potential source of predictability?

Figure 12 shows regional-mean upper ocean temperature anomalies in GOHSC observations and

the FLOR and SPEAR data assimilation runs that are used for ocean ICs. Note that there is

substantial overlap between the observations used for data assimilation and the GOHSC dataset.

Also note that the same ocean ICs are used for both SPEAR_LO and SPEAR_MED. We find

that both assimilation systems capture upper ocean temperature variability with some skill, with

regional detrended correlation values ranging from 0.31–0.79 in FLOR and 0.45–0.85 in SPEAR.

Next, we construct a statistical prediction model that uses these upper ocean temperature anoma-

lies to predict the position of the sea ice edge. Consistent with earlier work on the Antarctic

Circumpolar Wave (ACW; Gloersen and White 2001), we find that a prediction based on zonally

advected temperature anomalies substantially outperforms a prediction based on local temperature

anomalies. Specifically, we make a lead g statistical prediction of the sea ice edge position, 4(G, C),

as

4(G, C) = 0) ′(G− 2g, C − g) + 1, (9)

where C is the forecast target time, g is the forecast lead time, G is the longitude,) ′ is the upper ocean

temperature anomaly, 2 is the upper ocean eastward advection speed, and 0 and 1 are coefficients
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obtained via linear regression. These predictions are constructed using upper ocean temperature

anomalies from the SPEAR and FLOR ocean ICs. We find that optimal prediction skill is obtained

using temperature anomalies in the upper 50m south of 60◦S and using an advection speed of

2 = 360◦/7 years. This advection speed is the same as used earlier in Eq. 8, and the geographic

domain corresponds to the dominant region of sea ice variability.

We plot the skill of these advected persistence forecasts in Fig. 13, finding that the skill of the

initialized dynamical predictions (Fig. 13a,b) can be reasonably well captured by the statistical

predictions (Fig. 13c,d). This high reconstructed skill suggests that initialized upper ocean tem-

peratures, and the model’s ability to advect these anomalies eastward via the simulated ocean

circulation, are providing a key source of prediction skill in these systems. In some regions the

statistical model notably outperforms the dynamical predictions. In particular, the Ross Sea stands

out as a region where the advected persistence forecast displays prediction skill up to seven month

lead times, whereas the dynamical models have little skill beyond two month lead times. The

success of the statistical model in the Ross Sea shows that these systems are not capitalizing upon

a key source of potential predictability that is present in their ocean ICs, demonstrating clear room

for improvement in this region. We further discuss this issue in subsection 5.b.

Figure 11d–f shows the skill of the three linear regression models described in subsection 4.b

for winter predictions of Amundsen and Bellingshausen SIE, a region of high skill in each of the

systems. The advected upper OHC predictor is computed analogously to the advected persistence

ice edge forecast, except based on regional-mean temperature anomalies. Similar to the summer

SIE predictions, we find that SIE provides the key source of predictability at short lead times,

however, unlike summer predictions, SIV does not provide a crucial contribution to the winter

prediction skill. Advected OHC provides a key source of predictability at longer lead times,

explaining most of the skill in FLOR and some, but not all, of the skill in SPEAR. We also find
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that SIE persistence provides skill at longer lead times via a winter-to-winter reemergence of SIE

anomalies in the Amundsen and Bellingshausen sector.

5. Sources of Sea Ice Prediction Errors

In this section, we consider sources of prediction errors, focusing on the roles of (a) the ocean

convective state and (b) sea ice drift.

a. Importance of the Ocean Convective State

We first return to the summer skill differences between SPEAR_MED and SPEAR_LO in the

Weddell Sea (Fig. 5, subsection 4b). The higher prediction skill in SPEAR_MED is attributable

to SIT initialization (see Fig. 11), which leads to the follow-up question: Why does the higher res-

olution atmosphere of SPEAR_MED produce improved SIT ICs? We find that the SPEAR_MED

nudged run has a thicker sea ice mean state (Fig. 14a) and longer-lived SIT anomalies relative

to SPEAR_LO (Fig. 14b). Therefore, the improved prediction skill in SPEAR_MED appears to

derive from this system’s thicker, more persistent, sea ice ICs. Figure 14c shows the components

of the Weddell sea ice mass budget in the SPEAR_LO (dashed lines) and SPEAR_MED (solid

lines) nudged runs. We find that the thinner ice in SPEAR_LO results from decreased winter sea

ice growth and increased basal melt in winter. SPEAR_MED has more mass loss via ice export.

This difference in ice export is primarily due to the models’ mean differences in thickness, as their

simulated ice velocities are very similar (Fig. S6).

Previous work has shown that higher resolution atmospheric forcing of ice-ocean models can

increase simulated Antarctic sea ice mass via enhanced ice production in coastal polynyas (Mathiot

et al. 2010; Stössel et al. 2011; Barthélemy et al. 2012; Zhang et al. 2015). This increase has been

attributed to an improved representation of near-coastline and katabatic winds. We find that coastal
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polynyas only account for a small fraction (7%) of the ice growth differences between SPEAR_LO

and SPEAR_MED, with the dominant contribution coming from open-ocean differences in ice

growth (93%; not shown). The fact that SPEAR_LO has both reduced growth and increased

basal melt relative to SPEAR_MED is counterintuitive, since these terms typically have a positive

covariance that results in a negative (stabilizing) feedback (Martinson 1990; Wilson et al. 2019).

In particular, enhanced ice growth leads to enhanced brine rejection, which enhances vertical

mixing and entrainment of warm waters at the base of the mixed layer, which enhances basal melt.

Conversely, enhanced bottom melt reduces ice thickness, which increases the conductive heat flux

and enhances ice growth. The negative covariance between growth and basal melt found here

suggests that these processes are being driven by a common oceanic or atmospheric forcing which

overcomes the negative feedback expected from internal ice-ocean dynamics.

Examination of ocean properties suggests that the upper ocean is providing such a forcing. Wefind

that SPEAR_LO exhibits unrealistic deep wintertime mixing in the Weddell Sea (Fig. 14d), which

is substantially deeper than its SPEAR_MED counterpart. These deep mixed layers in SPEAR_LO

are accompanied by consistent spatial patterns of thinner sea ice, less areal ice coverage, increased

upward heat fluxes at the ocean surface, and increased basal melt (Fig. 15). The mixed layer

depths in SPEAR_LO are much deeper than observed, suggesting that the enhanced basal melt and

corresponding sea ice anomalies in this run are spurious. We also findwarm surface air temperature

anomalies that are spatially coincident with the region of deep convection (not shown), suggesting

that the lower growth rates in SPEAR_LO are also being driven by this spurious deep mixing.

The deep convection mechanism provides a likely explanation for the negative covariance between

growth and basal melt in the SPEAR_LO run. This analysis suggests that SPEAR_LO has reduced

summer skill due to spurious Weddell Sea deep convection in the nudged run used to produce its
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sea ice ICs. Future work is required to better understand the connection between this result and

atmospheric model resolution.

b. Sea Ice Drift

Observational studies have shown that local Antarctic ice extent correlates with sea ice drift

(Holland and Kwok 2012; Haumann et al. 2014). Thus, sea ice drift may influence both the

predictability and prediction skill of Antarctic SIE. Figure 8 showed that September ice edge

predictions appear to have low prediction skill in regions of strong northward drift. We examine this

hypothesis quantitatively in Fig. 16, plotting prediction skill of the September ice edge (skill values

averaged over lead times of 0–5 months; colored lines) and the mean northward winter drift speed

in OSISAF observations (black). We find that the western Ross and westernWeddell Seas have low

prediction skill and are characterized by strong northward drift of sea ice. Conversely, regions with

weaker northward drift and stronger eastward flow, such as the Amundsen and Bellingshausen,

eastern Weddell, and western Indian sectors, tend to have higher prediction skill. We find that

ice edge prediction skill is negatively correlated with meridional drift, however the correlation

values are fairly modest (-0.38, -0.29, and -0.28 in FLOR, SPEAR_LO, and SPEAR_MED,

respectively; -0.51, -0.36, and -0.37 when only considering the subset of drift speeds above the

50th percentile). We also find positive correlations with zonal drift speeds of 0.34, 0.49, and 0.60

in FLOR, SPEAR_LO, and SPEAR_MED, respectively. This positive correlation with zonal drift

is consistent with the predictability derived from zonal advection of ocean temperature anomalies

described in subsection 4.c.

Why could prediction skill be lower in regions of northward sea ice drift? One possibility is

that the sea ice edge is inherently less predictable in these regions, owing to a greater role for ice

drift in setting the ice edge position. This stronger dependence on drift suggests that unpredictable
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synoptic events may exert more control on the ice edge in these regions, resulting in reduced

predictability. However, the relatively high skill of the statistical advected OHC predictions in the

Ross Sea (Fig. 13c,d) suggests that sea ice anomalies in this region are potentially predictable.

Another possible reason is that predictions may be more susceptible to model physics errors

in regions of northward drift due to a greater role for ice dynamics. To investigate the latter

hypothesis, we examine model biases in predictions of sea ice drift. In Fig. 17, we show predicted

winter (JAS) drift patterns from forecasts initialized on April 1. We find that the general observed

ice circulation features, such as eastward drift near the ice edge, westward drift near the coastline,

and northward export in the Ross and Weddell Seas, are reasonably well predicted by each of the

models. The SPEAR models both have predicted drift speeds that are generally too high and,

correspondingly, have too much ice export in the Ross Sea. This enhanced export may contribute

to the low prediction skill found in this region. However, we also note that FLOR has a more

realistic Ross Sea ice export but also has very poor prediction skill in this region. Future work is

required to further explore the connections between ice drift and predictability.

6. Discussion and Conclusions

This study has used retrospective seasonal forecasts from three dynamical prediction systems

to examine the seasonal prediction skill and predictability of Antarctic sea ice. We have ana-

lyzed initialized ensemble forecasts spanning 1992–2018 based on the FLOR, SPEAR_LO, and

SPEAR_MED dynamical models developed at the Geophysical Fluid Dynamics Laboratory. Our

results demonstrate that regional Antarctic SIE is predictable on seasonal timescales. The predic-

tion skill of the dynamical prediction systems generally exceeds the skill of an anomaly persistence

forecast, indicating that the dynamical models are providing additional sources of prediction skill

beyond SIE persistence.
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Long-lead ACC prediction skill at least 11 months in advance was found for autumn and winter

SIE in the Weddell, Indian, West Pacific, and Amundsen and Bellingshausen sectors. Skill

horizons based onMSSS skill were found to be generally shorter due to conditional forecast biases.

The high autumn and winter skill is partially attributable to upper ocean heat content (OHC)

anomalies that are initialized via ocean data assimilation and subsequently advected eastward by

the simulated upper ocean circulation. Predictions of the sea ice edge position show clear zones

of high prediction skill that propagate eastward, closely resembling the eastward propagating

predictability features identified in earlier perfect model studies (Holland et al. 2013; Marchi et al.

2019). We found that a simple statistical prediction based on advected upper ocean temperature

anomalies reproduced most of the ice edge prediction skill captured by the dynamical prediction

systems. The Ross Sea was found to have comparatively low skill in all three systemswith little skill

beyond two month lead times. The advected temperature statistical forecast clearly outperformed

the dynamical models in this region with skill up to seven month lead times, suggesting that these

systems are failing to capitalize on a key source of potential prediction skill. We also found that

sea ice drift properties may contribute to the lower prediction skill in the Ross Sea. Regions of

strong northward sea ice drift, such as the western Ross and western Weddell Seas, were found to

have lower prediction skill whereas regions of strong eastward drift, such as the Amundsen and

Bellingshausen, eastern Weddell and western Indian sectors, were found to have higher prediction

skill. The skill degradation in northward drift regions could be due to either a greater sensitivity

to model physics errors in these zones or reduced inherent predictability due to a greater role for

unpredictable synoptic variability in driving sea ice variations, however, this second explanation

appears unlikely given the success of the advected temperature prediction in the Ross Sea.

The SPEAR systems exhibit marked improvements over FLOR for summer SIE predictions.

These summer skill improvements are primarily associated with improved SIE and SIT initial

32
Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-20-0965.1.Brought to you by NOAA-GFDL Library | Unauthenticated | Downloaded 05/28/21 07:30 PM UTC



conditions. SPEAR_MED, which has higher summer skill than its lower-resolution counterpart

SPEAR_LO, was found to skillfully predict Weddell summer SIE at 7–9 month lead times and

Pan-Antarctic summer SIE at 5–7month lead times. We constructed three simple linear regression-

based prediction models, based on regional SIE, SIV, and advected upper OHC, respectively, to

examine the sources of SIE predictability in these systems. The statistical models showed that the

dominant source of summer SIE prediction skill at short lead times of 0–2 months is SIE anomaly

persistence whereas SIT anomaly persistence provides the dominant source of prediction skill at

longer lead times of 3–11 months. Earlier perfect model studies have emphasized that SIT plays

a limited role in multi-annual predictability (Holland et al. 2013; Ordoñez et al. 2018; Marchi

et al. 2019), however our results show that SIT is a critical source of Weddell Sea predictability

on seasonal timescales. The regression-based models also showed that SIE is the key source of

predictability at short lead times for winter SIE predictions, whereas advected OHC provides a

crucial source of predictability at longer lead times. We investigated the differences in summer

Weddell SIE skill between SPEAR_LO and SPEAR_MED, finding that SPEAR_MED’s higher

prediction skill is associated with thicker and more persistent Weddell SIT. The thinner sea ice used

to initialize the SPEAR_LO predictions was found to result from unrealistically deep wintertime

mixing in the Weddell Sea and corresponding enhanced basal melt, enhanced upward surface heat

flux, and reduced winter sea ice growth.

The regional Antarctic SIE skill scores reported in this study are generally higher than previously

documented regional SIE skill in the Arctic (e.g. Sigmond et al. 2016; Bushuk et al. 2017; Dirkson

et al. 2019; Kimmritz et al. 2019). The long-lead winter skill shown in theWeddell, Amundsen and

Bellingshausen, Indian, and West Pacific sectors is matched in the Arctic only in the Barents and

Labrador Seas. A unifying feature across these regions of long-lead skill is that the initialization

of upper OHC anomalies provides the key source of winter prediction skill (Bushuk et al. 2019).
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The zonal propagation of predictable OHC anomalies is an essential aspect of Antarctic sea ice

predictability, whereas Arctic winter skill has primarily been attributed to locally persistent OHC

anomalies. Similar to earlier work on Arctic sea ice, we have found that SIT provides the key

source of prediction skill for summer SIE predictions (Bonan et al. 2019). A key difference,

however, is that summer Weddell SIE can be predicted 7–9 months in advance whereas regional

Arctic summer SIE can only be skillfully predicted 1–4 months in advance due to an Arctic sea

ice spring predictability barrier (Day et al. 2014; Bushuk et al. 2020). These longer Antarctic

skill horizons suggest that an analogous predictability barrier is not present in the Antarctic and

that long-lead summer SIE predictions are possible, with important consequences for fisheries

management, shipping, conservation, scientific expeditions, and tourism.

There are a number of future research directions that emerge from this study. Firstly, comparisons

to other dynamical prediction systems are needed to further assess Antarctic sea ice prediction

skill and to evaluate the mechanisms of predictability identified in this work. Comparisons to

systems based on higher resolution ice-ocean models would be particularly valuable, as these

models may have improved representation of Southern Ocean convective processes. Secondly,

this study has highlighted long-lead summer predictability associated with SIT and short-lead

predictability associated with SIE persistence. The SIT and SIC initial conditions used in the

GFDL prediction systems are constrained by SSTs, atmospheric temperatures, and winds, but do

not directly assimilate sea ice observations. Continuous satellite SIC observations are available

dating back to 1979, however satellite SIT products have large uncertainties and only exist for brief

periods of time in the Antarctic. The recent CryoSat-2 and IceSat-2 satellite missions represent an

opportunity to create these SIT data products, which could critically improve seasonal Antarctic

sea ice predictions (Kacimi and Kwok 2020). Future work is needed to assess the potential benefits

of sea ice data assimilation on Antarctic sea ice prediction skill. Thirdly, the identified autumn and
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winter predictability associated with advected upper OHC was based on temperature anomalies in

the upper 50m. There is potentially additional predictability to be leveraged from subsurface heat

content in deeper layers, which is now being sampled in greater detail via autonomous Argo floats,

marine mammals, and ship-based CTD data. Finally, additional research is required on the inherent

predictability of Antarctic sea ice. Potential topics to explore include the roles of sea ice drift,

the ocean convective state, and forecast initialization month in determining sea ice predictability.

Overall, the findings of this study suggest a promising potential for providing skillful operational

Antarctic sea ice predictions on seasonal timescales.
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Table 1. Summary of GFDL seasonal prediction systems and retrospective forecasts considered in this study.

System Property FLOR SPEAR_LO SPEAR_MED

Ocean Model MOM5; 1.0◦, 50 vertical levels MOM6; 1.0◦, 75 vertical levels MOM6; 1.0◦, 75 vertical levels

Sea Ice Model SIS1; 1.0◦, 5 category ITD SIS2; 1.0◦, 5 category ITD SIS2; 1.0◦, 5 category ITD

Atmosphere Model AM2.5; 0.5◦, 32 vertical levels AM4; 1.0◦, 33 vertical levels AM4; 0.5◦, 33 vertical levels

Land Model LM3; 0.5◦ LM4; 1.0◦ LM4; 0.5◦

Ocean Data Satellite SST, Argo, XBT,
Moored buoys, CTD, Seal data,
other WOD profiles; daily

Satellite SST, Argo, XBT,
Moored buoys; daily

Satellite SST, Argo, XBT,
Moored buoys; daily

Atmosphere Data 3-D temperature from
NCEP-2; 6-hourly

3-D temperature, winds, humidity
from CFSR; 6-hourly

3-D temperature, winds, humidity
from CFSR; 6-hourly

Sea Ice Data None Satellite SIC used to adjust
under-ice SST; daily

Satellite SIC used to adjust
under-ice SST; daily

Ocean ICs ECDA SPEAR ODA SPEAR ODA

Sea ice ICs ECDA SPEAR_LO nudged run SPEAR_MED nudged run

Atmosphere ICs AMIP run SPEAR_LO nudged run SPEAR_MED nudged run

Land ICs AMIP run SPEAR_LO nudged run SPEAR_MED nudged run

Reforecast Period 1981–2018 1992–2018 1992–2018

Ensemble Size 12 15 15

Initialization Dates First of each month First of each month First of each month

Prediction Length One year One year One year
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Fig. 1. The Antarctic regions considered in this study. The black and gray contours indicate the observed

climatological (1992–2018) sea ice edge in September and March, respectively. The regions have longitude

boundaries of 60◦W–20◦E (Weddell), 20◦E–90◦E (Indian), 90◦E–160◦E (West Pacific), 160◦E–130◦W (Ross),

and 130◦W–60◦W (Amundsen and Bellingshausen), respectively.
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Fig. 2. Antarctic regional SIE climatologies compared to NSIDC observations (black). Solid lines show the

SIE climatologies from the assimilation runs used for sea ice ICs for FLOR (blue), SPEAR_LO (cyan), and

SPEAR_MED (red). Dashed lines show the SIE climatologies from historical simulations of each model. These

climatologies are computed over years 1992–2018, which are common to all experiments.
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Fig. 5. Seasonal prediction skill (ACC) for detrended regional Antarctic SIE for different target months and

forecast lead times. Triangle and dot markers indicate months in which the ACC values are statistically significant

at the 95% confidence level based on a bootstrapped resampling procedure. Triangles indicate months where

the model’s skill beats the persistence forecast, and dots indicate months where the model’s skill is statistically

significant but doesn’t beat persistence.
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Fig. 6. Seasonal prediction skill (MSSS) for detrended regional Antarctic SIE for different target months and

forecast lead times. The predictions have been bias corrected via a leave-one-out linear regression adjustment.

Triangle and dot markers indicate months in which the MSSS values are statistically significant at the 95%

confidence level based on a bootstrapped resampling procedure. Triangles indicate months where the model’s

skill beats the persistence forecast, and dots indicate months where the model’s skill is statistically significant

but doesn’t beat persistence. This metric is comparable to ACC2 (Fig. S3).
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Fig. 7. Prediction skill of the sea ice edge position (defined asmaximumnortherly extent of sea ice) for forecasts

initialized on April 1. Detrended ACC values are plotted for each longitude and target month. Climatological

observed winter sea ice drift (JAS) is plotted as vectors.
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Fig. 8. Prediction skill of the sea ice edge position (defined as maximum northerly extent of sea ice) for target

month September. Detrended ACC values are plotted for each longitude and lead time. Climatological observed

winter sea ice drift (JAS) is plotted as vectors.
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Fig. 9. Relation between regional SIE ICs and prediction skill. Black curves show the monthly detrended

correlation for regional SIE between the ICs and NSIDC observations. Colored curves show the detrended ACC

prediction skill at various lead times for FLOR (a–f) and SPEAR_MED (g–l).

60
Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-20-0965.1.Brought to you by NOAA-GFDL Library | Unauthenticated | Downloaded 05/28/21 07:30 PM UTC



Fig. 10. Detrended correlations between observed March Weddell SIE and SPEAR_MED SIT ICs in earlier

months. The black contour shows the observed climatological position of the March sea ice edge. The gray

contours show the observed sea ice edge position at different initializationmonths, which are indicated in brackets.

61
Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-20-0965.1.Brought to you by NOAA-GFDL Library | Unauthenticated | Downloaded 05/28/21 07:30 PM UTC



C
o
rr

e
la

ti
o
n

Lead (months)

FLOR

 

 
(a)

W
e
d

d
e
ll

: 
M

a
r
c
h

0 1 2 3 4 5 6 7 8 9 1011
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ACC SIE predictor SIV 60S predictor Advected OHC predictor

Lead (months)

SPEAR_LO(b)

0 1 2 3 4 5 6 7 8 9 1011
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lead (months)

SPEAR_MED(c)

0 1 2 3 4 5 6 7 8 9 1011
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

C
o
rr

e
la

ti
o
n

Lead (months)

FLOR(d)

A
 a

n
d

 B
: 

A
u

g
u

st

0 1 2 3 4 5 6 7 8 9 1011
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lead (months)

SPEAR_LO(e)

0 1 2 3 4 5 6 7 8 9 1011
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lead (months)

SPEAR_MED(f)

0 1 2 3 4 5 6 7 8 9 1011
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 11. Sources of prediction skill for March Weddell SIE (a–c) and August Amundsen and Bellingshausen

SIE (d–f). Blue lines show the detrended ACC skill in FLOR, SPEAR_LO, and SPEAR_MED. Black, red, and

magenta lines show the detrended prediction skill of linear regression predictions based on regional SIE ICs,

regional SIV ICs, and advected OHC ICs, respectively. The SIV and OHC predictions are based on the region

south of 60◦S. Correlations that are statistically significant at the 95% level based on a C-test are indicated by dots.

Note that the statistical predictions are shifted by 0.5 month lead time since these are computed using monthly

mean quantities, whereas the dynamical predictions are initialized on the first of each month.
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Fig. 12. Regional mean upper ocean temperature anomalies (0–50m; south of 60◦S) in GOHSC observations

(black), FLOR ocean ICs (blue), and SPEAR ocean ICs (red). Note that the same ocean ICs are used for both

SPEAR_LO and SPEAR_MED. Data is plotted as one-year running means of the monthly data. Colored text

indicates detrended correlation values between the ocean ICs and GOHSC.
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Fig. 13. Prediction skill (detrended ACC) of the sea ice edge position for April 1 initialized forecasts from (a)

FLOR and (b) SPEAR_MED and for statistical forecasts based on (c) FLOR ocean ICs and (d) SPEAR ocean

ICs. The statistical forecasts use advected persistence of ocean temperature anomalies in the upper 50m and an

eastward advection speed of 2 = 360◦/7 years (see Eq. 9).
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Fig. 14. (a) Weddell SIT climatology in SPEAR_LO (blue) and SPEAR_MED (red) nudged runs; (b) Lagged

correlation between Weddell January SIV and earlier SIV in SPEAR nudged runs; (c) Weddell sea ice and

snow mass budget climatology in SPEAR_LO (dashed lines) and SPEAR_MED (solid lines). The mass budget

consists of sea ice growth, melt, and export. (d) Weddell mixed-layer depth climatology in SPEAR nudged runs,

SPEAR ODA (magenta), and from Argo and ship-based observations (black). All quantities are computed over

the Weddell Sea domain south of 60◦S.
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Fig. 15. Winter climatologies (JAS) in nudged runs of SPEAR_LO, SPEAR_MED, and their difference.

Plotted are SIT (a–c), SIC (d–f), mixed layer depth (g–i), net upward heat flux at the ocean surface and ocean-ice

interface (j–l), and basal sea ice melt (m–o).

66
Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-20-0965.1.Brought to you by NOAA-GFDL Library | Unauthenticated | Downloaded 05/28/21 07:30 PM UTC



Fig. 16. September sea ice edge prediction skill in FLOR (blue), SPEAR_LO (cyan), and SPEAR_MED

(red) and its relation to observed northward winter sea ice drift (black). The northward sea ice drift has been

meridionally averaged over months JAS. Prediction skill shows the average detrended ACC over lead times of

0–5 months. Prediction skill values have been smoothed zonally using a 20◦ running mean. Climatological

observed winter sea ice drift (JAS) is plotted as vectors.
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Fig. 17. Predicted climatological JAS sea ice drift patterns from April 1 initialized forecasts in (b) FLOR, (c)

SPEAR_LO, and (d) SPEAR_MED compared with (a) observed JAS drift fromOSISAF. Observed and predicted

JAS SIC (%) is plotted in colors.
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